Localize site content
    • About
    • History
    • Who was Vera Rubin?
    • Construction Updates
      • Rubin in Chile
      • Cerro Pachón
      • Observatory Site Selection
      • Organization
      • Leadership
      • Science Collaborations
    • Funding Information
      • Work With Us
      • Jobs Board
    • Explore
      • How Rubin Works
      • Legacy Survey of Space and Time (LSST)
      • Rubin Technology
      • Alert Stream
      • Rubin Numbers
    • Science Goals
    • Rubin Voices
    • Get Involved in Rubin Research
      • Activities, Games, and More
      • Space Surveyors Game
      • Animated Video Series
      • Join Rubin Observatory’s 3200-Megapixel Group Photo!
    • Gallery
      • Main Gallery
      • First Look
      • Graphics & Illustrations
      • Outreach & Education
    • Slideshows
    • Construction Archive Gallery
    • Media Use Policy
    • News
    • Press Releases
      • Rubin Observatory First Look
      • The Cosmic Treasure Chest
      • A Swarm of New Asteroids
      • Rhythms in the Stars
      • Trifid and Lagoon Nebulae
      • Rubin First Look Watch Parties
    • Media Resources
    • Press Releases
    • Name Guidelines
    • For Scientists
      • News, events, and deadlines
      • Rubin Science Assemblies
      • Rubin Data Academy
      • Rubin Community Workshop
      • Resources for scientists
      • Rubin Community Forum
      • Early Science Program
      • Workshops and seminars
      • Tutorials
      • LSST Discovery Alliance
      • Code of Conduct
      • Public outreach materials
      • Survey, instruments, and telescopes
      • Key numbers
      • The Legacy Survey of Space and Time (LSST)
      • Instruments
      • Telescopes
      • Data products, pipelines, and services
      • Data access and analysis
      • Recent data releases
      • Alerts and brokers
      • Data processing pipelines
      • Future data products
      • Data Policy
      • Simulation software
      • Documentation and publications
      • Technical documentation
      • How to cite Rubin Observatory
      • Publication policies
      • Glossary & Acronyms
      • Science Collaborations
      • Galaxies Science Collaboration
      • Stars, Milky Way, and Local Volume Science Collaboration
      • Solar System Science Collaboration
      • Dark Energy Science Collaboration
      • Active Galactic Nuclei Science Collaboration
      • Transients and Variable Stars Science Collaboration
      • Strong Lensing Science Collaboration
      • Informatics and Statistics Science Collaboration
    • Citizen Science
      • Committees and teams
      • Science Advisory Committee (SAC)
      • Survey Cadence Optimization Committee (SCOC)
      • Users Committee
      • Community Science Team (CST)
      • Research Inclusion Working Group (RIWG)
      • Project Science Team (PST)
    • Frequently Asked Questions
    • Education
    • First Look Resources for Lasting Impact
    • Education FAQs
    • Educators
    • Glossary
    • Investigations
    • Calendar
Localize site content
Homepage
  • Jobs Board
  • Intranet
  • Visual Identity Guide
  • Image Gallery
  • Privacy Policy

Contact us

The U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science will support Rubin Observatory in its operations phase to carry out the Legacy Survey of Space and Time. They will also provide support for scientific research with the data. During operations, NSF funding is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF, and DOE funding is managed by SLAC National Accelerator Laboratory (SLAC), under contract by DOE. Rubin Observatory is operated by NSF NOIRLab and SLAC.

NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Funding agency logos
  1. News
  2. Rubin Observatory First Look
  3. Rhythms in the Stars
‌
Credit: NSF–DOE Vera C. Rubin Observatory

Rhythms in the Stars

In these early frames of what will be the greatest cosmic movie ever made, we see NSF–DOE Vera C. Rubin Observatory's unparalleled ability to detect celestial objects that change in brightness. This capability will reveal the flickers, pulses, and explosions of light across the Universe that only repeated observations can capture. During its 10-year survey, Rubin will record an unprecedented number of cosmic light shows, revealing patterns and one-time wonders, and unlocking clues about the Universe’s behavior over time.

In this video, Rubin showcases 46 subtly pulsating stars — classified as RR Lyrae variable stars — detected in this first set of observations. Three individual stars are shown varying in brightness over time using a technique called difference imaging (link). Then we zoom out to a view of the southern region of the Virgo Cluster where other RR Lyrae variable stars visible to Rubin are highlighted. Although the stars are observed in the direction of the Virgo Cluster, they are much closer to Earth in our home galaxy, the Milky Way. Over the next 10 years, Rubin will detect up to about 100,000 of these stars extending out to more than a million light-years away, allowing scientists to map the outer reaches of our Galaxy and explore the structure of the Galactic halo that surrounds the Milky Way and extends nearly halfway to our closest neighbor, the Andromeda galaxy. The structures of galaxies like the Milky Way are fascinating environments — Vera Rubin herself produced the first convincing evidence for dark matter by studying spiral galaxies. While RR Lyrae stars might not look flashy at first glance, they play a quiet but critical role in helping us understand the scale and shape of our own galaxy.

RR Lyrae variables are a type of star that acts like a cosmic metronome, pulsing steadily and predictably over time. These stars are old, low-mass, and typically found in ancient parts of galaxies like globular clusters and stellar halos. They brighten and dim in a regular cycle, usually over the course of less than a day. RR Lyrae stars were selected as a target for Rubin’s First Look observations because their quick variations in brightness can be detected by Rubin over just a few nights. Their rhythmic variability isn’t just a curiosity — it’s a powerful tool for scientists. Because the relationship between an RR Lyrae star’s brightness and its pulsation period is well understood, these stars can be used as “standard candles” to measure distances across the Milky Way and nearby galaxies. RR Lyrae stars are like signposts in space!

Other telescopes can detect changes in a star’s brightness, but Rubin is the only one that can simultaneously catch multiple faint, steady pulses of RR Lyrae stars across huge swaths of the sky and also detect them very far away from Earth. Rubin's sensitive camera captures variations so subtle that our eyes can barely detect them when looking at the images. Rubin will collect nearly a thousand measurements for each variable star, ensuring that scientists who focus on variable stars can amass huge samples to study. Rubin’s wide view and fast survey speed will give us data on far more of these stars than ever before — even those way out in the outskirts of the Milky Way — giving us a much clearer picture of what our Galaxy really looks like.

This video features data collected by Rubin Observatory using the 3200-megapixel LSST Camera — the largest digital camera in the world.


Explore the other First Look releases

  1. The Cosmic Treasure Chest
  2. A Swarm of New Asteroids
  3. Trifid and Lagoon Nebulae
Press Release

Ever-changing Universe Revealed in First Imagery From NSF–DOE Vera C. Rubin Observatory

June 23, 2025
From distant stars and galaxies to asteroids whizzing through the Solar System, this next-generation facility unveils its first imagery and brings the night sky to life like never before
Read more

Download Rubin's First Look releases

Want to download the imagery released for Rubin Observatory's First Look? The link below will take you to the First Look gallery

Browse the First Look Gallery
Decorative illustration

Let's Connect

  • Visit the Rubin Observatory on Facebook
  • Visit the Rubin Observatory on Instagram
  • Visit the Rubin Observatory on LinkedIn
  • Visit the Rubin Observatory on Twitter
  • Visit the Rubin Observatory on YouTube